quinta-feira, 15 de maio de 2008

Atividade PPP2: Portifólio



UNIVERSIDADE SALVADOR - UNIFACS
NUPPEAD - NÚCLEO DE PESQUISAS E PROJETOS EM EDUCAÇÃO À DISTÂNCIA
CURSO: LICENCIATURA EM MATEMÁTICA
DISCIPLINA: PESQUISA E PRÁTICA PEDAGÓGICA 2
PROFESSORA /TUTORA: LÚCIA LESSA
TURMA 07 - FLUXO 3
ALUNA: SOLEIDE MORAES SILVA




ATIVIDADE 2: PORTIFÓLIO




Cada aluno deverá colocar no blog no mínimo três atividades :

  • 1 jogo;
  • Uma atividade que relacionasse leitura e matemática;
  • 1 atividade que envolva um desafio e/ou uma investigação matemática;

Para cada atividade deverá ser colocada :


  • Habilidades trabalhadas;
  • Conteúdos a serem trabalhados;
  • Objetivos da atividade;
  • Seqüência didática da atividade;


Proposta de leitura relacionando conceitos matemáticos:



É muito importante relacionar conteúdos matemáticos com situações presentes na realidade que vivemos. A leitura a seguir permite essa integração.

Seqüestro de carbono pela floresta amazônica
Quanto mais alta a exposição ao gás carbônico, mais rápido crescem as árvores

(foto de igarapé na Amazônia)
A Amazônia é capaz de fixar nas árvores cerca de 1,2 toneladas de
carbono por hectare a cada ano



A floresta amazônica pode absorver grande quantidade do dióxido de carbono (gás carbônico ou CO2) - um dos principais compostos da poluição atmosférica liberada pelo homem em processos como a queima de combustíveis. Recentemente, observou-se que, quanto maior for a exposição das árvores da floresta a esse gás, mais rápido será seu crescimento. Essa é uma das conclusões do estudo feito em colaboração entre cientistas do Instituto Nacional de Pesquisa da Amazônia (Inpa) e da Universidade da Califórnia em Irvine (Estados Unidos) e publicado na revista Nature em 22 de março.

Sempre se acreditou que a Amazônia (uma floresta tropical úmida) estava em equilíbrio, ou seja, que aspirava e expelia a mesma quantidade de gás carbônico. As plantas obtêm energia por dois processos: a fotossíntese (em que aprisionam gás carbônico e liberam oxigênio) e a respiração (em que as trocas gasosas se dão de forma inversa). No entanto, resultados de observações sucessivas ao longo dos últimos 20 anos mostram que a floresta é capaz de fixar nas árvores cerca de 1,2 toneladas de carbono por hectare a cada ano (um hectare tem 10 mil metros quadrados, medida similar à de um campo de futebol). "Se considerarmos que a Amazônia tem por volta de 250 milhões de hectares, chega-se à conclusão que a floresta pode absorver até 300 milhões de toneladas de carbono por ano", afirma Niro Higuchi, engenheiro florestal do Inpa e um dos autores da pesquisa em questão.

A concentração excessiva de gás carbônico na atmosfera é responsável pelo efeito estufa, fenômeno que contribui para o aquecimento da Terra e pode levar a efeitos como enchentes, secas e aumento do nível dos mares. Só o Brasil emite, em média, 65 milhões de toneladas do gás poluente para a atmosfera a cada ano por meio da queima de combustíveis fósseis.

Outro resultado que surpreendeu os autores do estudo diz respeito ao crescimento das árvores. Segundo Higuchi, que estuda a Amazônia há 21 anos, elas crescem proporcionalmente à quantidade de gás carbônico a que são expostas. "Nossos experimentos mostraram que, quando dobra a quantidade de exposição de dióxido carbono, a árvore cresce, em média, 25% mais rapidamente." Um trabalho anterior, também publicado na Nature, havia verificado a idade das árvores de terra firme (trecho não inundado nas épocas de cheia dos rios). "Encontramos exemplares com até 1400 anos", conta o pesquisador.

O próximo objetivo de Higuchi é entender melhor o que ocorre nas raízes das árvores - um importante e pouco estudado reservatório de carbono. "Isso tudo faz parte de um projeto que pretende traçar um modelo geral sobre a Amazônia", afirma o cientista. Segundo ele, o estudo poderá ser útil para o desenvolvimento sustentável da região e para prever a conseqüências de situações diversas como queimadas, por exemplo.

fonte: http://www.uol.com.br/cienciahoje/chdia/n331.htm





Ø Conteúdos a serem desenvolvidos a partir do texto
- Função: conceito, taxa de variação e representação gráfica
- Porcentagem
- Proporção

Ø Objetivos da atividade
A partir da leitura e análise do texto, o aluno deverá ser capaz de:
- Perceber a relação entre a matemática e mundo que o cerca;
- Identificar a função em uma situação real;
- Interpretar as informações contidas no texto relacionando ao conceito de função e analisar a dinâmica da variação interdependente entre duas variáveis;
- Representar graficamente a interdependência entre duas variáveis;
- Calcular porcentagem de variação das variáveis.

Ø Habilidades trabalhadas
Interpretação, análise e compreensão de texto

Ø Seqüência didática
- Distribuir o texto “Seqüestro de carbono na Floresta Amazônica”
- Leitura compartilhada do texto e comentário a respeito do conteúdo do texto buscando chamar a atenção dos alunos para a relação existente entre o texto e a Matemática
- Propor aos alunos uma atividade relacionada ao texto através da qual será trabalhado o conceito de função, representação gráfica e porcentagem.

Ø Atividade desenvolvida a partir do texto.
Questão 1
Considere a frase "Nossos experimentos mostraram que, quando dobra a quantidade de exposição de dióxido carbono, a árvore cresce, em média, 25% mais rapidamente.” Se considerarmos um conjunto de árvores e medirmos quantas toneladas de madeira teremos a mais a cada ano, teremos uma medida do seu crescimento, concorda?

Então suponhamos que o crescimento desse conjunto de árvores seja de 1 tonelada ao ano quando o carbono posto em circulação seja de 1 tonelada. A frase do parágrafo anterior diz que, se dobrarmos a exposição ao dióxido de carbono, a velocidade de crescimento aumentará em 25%.
a) para termos uma idéia mais concreta desse padrão de variação, complete a tabela abaixo.


b) O texto sugere que isso equivale a dizer que as árvores crescem proporcionalmente à quantidade de gás carbônico a que são expostas. Você concorda com isso?

Questão 2
Como seria um gráfico da quantidade de carbono fixado nas árvores, em toneladas por hectare, em função do tempo, em anos, se supusermos que a floresta fixa nas árvores 1,2 tonelada de carbono por hectare a cada ano?


fonte: Matemática.TP3 Matemática nas formas geométricas e na tecnologia.Programa Gestão da Aprendizagem Escolar - Gestar II


JOGOS E DESAFIOS MATEMÁTICOS



Propor desafios e jogos em sala de aula é muito importante, pois os alunos gostam e é um meio de proporcionar à classe, aprendizagem somada à diversão.




Desafio Matemático




"Um comerciante compra uma caixa de vinho estrangeiro por R$ 1 000,00 e vende pelo mesmo preço, depois de retirar4garrafas e aumentar o preço da dúzia em R$ 100,00. Então, qual é o número original de garrafas de vinho na caixa?"


fonte: http://www.somatematica.com.br



Ø Conteúdos a serem desenvolvidos a partir do desafio


- Equações de 2º grau

Ø Objetivos da atividade
A partir do desafio proposto, o aluno deverá ser capaz de:
- Interpretar as informações contidas no desafio, escrevendo-as na linguagem matemática;
- Levantar hipóteses e buscar estratégias para a solução de problemas;
- Resolver situações-problemas que envolvem equações de 2º grau;

Ø Habilidades trabalhadas
Através dessa atividade os alunos desenvolverão habilidades de interpretação, de raciocínio, de cooperação e de formulação de estratégias.

Ø Seqüência didática
Dividir a classe em equipes com, no máximo, 4 alunos e propor aos alunos o desafio.
Dar um tempo para que consigam a solução do desafio e, após esse tempo, verificar se conseguiram ou não. Caso não consigam, mostrar para eles o desenvolvimento da resolução e sua solução.



Jogo : Tiras de propriedades para funções


Números de participantes em cada equipe: 3 ou 4
Material necessário: tiras de propriedades e cartas das funções
Regras:
- As cartas de funções são embaralhadas e, com as faces voltadas para baixo, dispostas sobre uma mesa ou carteira formando um monte.
- As tiras das propriedades também são embaralhadas e distribuídas em número igual por entre os jogadores. Cada um deve receber pelo menos 4 tiras. Nem todas precisam ser distribuídas.
- Para primeira função retirada do monte, cada jogador seleciona, entre suas tiras, aquelas que correspondem a propriedade dessa função. Depois os jogadores discutem entre si se as propriedades selecionadas são realmente válidas para a função em questão.
- Cada tira de propriedade corretamente escolhida representa um ponto para o jogador.
- Posteriormente, as tiras de propriedades são novamente juntadas, embaralhadas e distribuídas para os jogadores e outra função é retirada do monte. Os jogadores mais uma vez escolhem, entre suas tiras, as que representam propriedades da função selecionada.
- O jogo continua sucessivamente o número de vezes combinado pelos jogadores.
- O ganhador será aquele que ao final tiver obtido o maior número de pontos.

Exemplos de tiras de propriedades

Exemplos de cartas com funções Ø Conteúdos a serem desenvolvidos a partir do jogo

- Propriedades das Funções de 1º Grau
- Propriedades das Funções de 2º Grau

Ø Objetivos da atividade
A partir do jogo proposto, o aluno deverá ser capaz de:
- Identificar as propriedades correspondentes a cada tipo de função estabelecendo relações de semelhança e diferença entre elas;
- Sistematizar as principais propriedades das funções de 1º e 2º graus.

Ø Habilidades trabalhadas
Através dessa atividade os alunos desenvolverão habilidades de atenção, de coletividade e raciocínio.

Ø Seqüência didática
Dividir a classe em equipes de 4 alunos e entregar aos alunos o material do jogo.
Com o material do jogo em mão, o professor exporá para a turma as regras do jogo (se for a primeira vez que o jogo for utilizado, deixar as regras expostas num cartaz).
Dá-se início ao jogo e o professor fica como orientador e auxiliador para o momento das dúvidas.


SMOLE, Kátia Stoocco; DINIZ, Maria Ignez.Matemática Ensino Médio. Voume 1. 5ª edição. Editora Saraiva.São Paulo,2007.



Mais um desafio interessante!


Este desafio não trabalha nenhum conteúdo específico de Matemática de 5ª a 8ª série e Ensino Médio, porém auxilia e muito o desenvolvimento da aprendizagm Matemática.


Ø Habilidades trabalhadas
Através dessa atividade os alunos desenvolverão a atenção, o raciocínio lógico matemático e a percepção seqüencial e posicional.

Ø Seqüência didática
- Formar duplas e entregar o desafio seguinte:


Leia com atenção e tente resolver a situação abaixo seguindo as Pistas.


José Carlos, Beatriz, Carolina, Renê, Rogers, Danilo, Daniele e Jaqueline guardaram suas balas nas prateleiras. Descubra onde e quais são as balas preferidas de cada um.


PISTAS:
1. Tanto as balas favoritas de José Carlos como as de Jaqueline estão na prateleira de cima.
2. As balas de morango de René estão no vidro imediatamente abaixo do vidro de balas de iogurte.
3. As balas preferidas de Carolina estão entre as balas sortidas de Rogers e as de frutas. As balas de Rogers não são guardadas num vidro na extremidade da prateleira.
4. As balas dietéticas são guardadas num vidro localizado na extremidade direita da prateleira inferior, enquanto as balas favoritas de Daniele estão na outra extremidade da mesma prateleira.
5. As balas de laranja estão imediatamente acima das balas de chocolate.
6. Danilo não gosta das balas de uvas; suas balas preferidas não estão no vidro situado abaixo do vidro das balas preferidas por José Carlos.

Autor desconhecido

- Dar tempo para que eles descubram a solução do desafio e, após esse tempo pedir a alguns alunos que mostrem como chegou à solução.

3 comentários:

Anônimo disse...

Eu gostei muito do seu blog. Também sou professora de Matemática e percebo que você gosta de desenvolver habilidades para que os alunos tenha um bom aprendizado, na área de Matemática

Anônimo disse...

Eu gostei muito do seu blog. Também sou professora de Matemática e percebo que você gosta de desenvolver habilidades para que os alunos tenha um bom aprendizado, na área de Matemática

Unknown disse...

Como tenho pra te agradeçer por esse blog, vc ñ tem ideia de como ele me ajudou, bijs xau